2,254 research outputs found

    TPOS2020 : Tropical Pacific Observing System for 2020

    Get PDF
    This paper presents the new international TPOS2020 project: why it has been established, what are its scientific objectives, its proposed organization, governance, and what the expected outcomes are. It is aiming at informing Coriolis, Mercator Océan, and the operational oceanography communities, all concerned, and involved in generating interest and contributions to the project. Building upon its scientific activities in the Pacific and the surrounding countries, the French community is willing to take an active role in this international project. The TPOS 2020 Project is a focused, finite term project, which began in 2014 and will be completed in 2020. It will evaluate, and where necessary provide guidance, to change all elements that contribute to the Tropical Pacific Observing System (TPOS) based on a modern understanding of tropical Pacific science. Learning lessons from the great success-and finally partial collapse- of the TAO/TRITON array, the project objective is to build a renewed, integrated, internationally-coordinated and sustainable observing system in the Tropical Pacific, meeting both the needs of climate research and operational forecasting systems. The scientific objectives are: - To redesign and refine the TPOS to observe El Niño Southern Oscillation (ENSO) and advance scientific understanding of its causes, - To determine the most efficient and effective observational solutions to support prediction systems for ocean, weather and climate services, - To advance understanding of tropical Pacific physical and biogeochemical variability and predictability. TPOS2020 is coordinated by a steering committee with task teams and working groups working on specific aspects of the observing system. Since much of the use and benefit of TPOS data will be achieved through model assimilation and syntheses, the operational modeling centers are considered key partners. The TPOS2020 project also opens partnerships with other global ocean observing communities: the meteorological community, and the coastal and regional ocean communities. TPOS 2020 embraces the integration of complementary sampling technologies; it will consider the different observing system components as an integrated whole, targeting robustness and sustainability, along with a developed governance and coordination

    Revisiting the tropical Atlantic western boundary circulation from a 25-year time series of satellite altimetry data

    Get PDF
    Geostrophic currents derived from altimetry are used to investigate the surface circulation in the Western Tropical Atlantic over the 1998&ndash;2017 period. Using six horizontal sections defined to capture the current branches of the study area, we investigate their respective variations at both seasonal and interannual time-scales as well as the spatial distribution of these variations. Our results show that the central branch of the South Equatorial Current, the North Brazil Current component located south of the equator, the Guyana Current and the northern branch of the South Equatorial Current at 42&deg; W have similar annual cycles, with maxima/minima during boreal winter-spring/October&ndash;November. In contrast, the seasonal cycles of the North Brazil Current branch located between the equator and 7&ndash;8&deg; N, the North Brazil Current retroflected branch and the North Equatorial Countercurrent show maxima/minima during boreal fall/May. West of 42&deg; W, an eastward current is observed between 0&deg;&ndash;2&deg; N, identified as the equatorial extension of the retroflected branch of the North Brazil Current. It is part of a large cyclonic circulation observed between 0&deg;&ndash;6&deg; N and 35&deg;&ndash;45&deg; W during boreal spring. The North Equatorial Countercurrent shows a two-core structure during the second half of the year, when we also observe the two regions where the North Brazil Current retroflects. The latter can be related to the wind stress curl seasonal changes. At interannual scales, depending on which side of the equator, the North Brazil Current exhibits two opposite scenarios related to the tropical Atlantic Meridional Mode phases. The interannual variability of the North Equatorial Countercurrent and of the northern branch of the South Equatorial Current (in terms of both strength and/or latitudinal shift) at 42&deg; W are also associated to the Atlantic Meridional Mode, while they are associated to the zonal mode phases at 32&deg; W.</p

    Mytillocactus (cactaecea) : botanical, agronomic, physichemical and chemical characteristics of fruits

    Full text link
    Au Mexique, la production de fruits de Myrtillocactus est importante, pourtant ceux-ci sont souvent sous-utilisés. Bien qu'ils soient essentiellement exploités pour leur potentiel de colorants alimentaires, les fruits mériteraient davantage d'attention quant à leurs autres propriétés pour l'alimentation, mais les informations sur leur composition physico-chimique sont rares. Afin de disposer d'éléments de base pour le développement de la culture de Myrtillocactus, nous avons étudié les informations accessibles à ce jour. Description botanique. Quatre espèces de Myrtillocactus ont été identifiées et rapportées dans la littérature. Elles diffèrent par la forme, la couleur, et d'autres caractéristiques phénotypiques. Au Mexique, l'espèce prédominante est M. geometrizans, mais M. schenckii se développe également abondamment dans toutes les terres arides et semi-arides du pays. Les analyses cytologiques effectuées sur M. geometrizans ont montré que la plante était diploïde (2n = 22). Aspects agronomiques. Le genre Myrtillocactus appartient à la famille des cactacées. En raison de son métabolisme crassulacéen acide, la plante peut se développer dans les montagnes arides et semi-arides du Mexique. Les espèces de Myrtillocactus sont propagées asexuellement par explants ou par clonage. En conditions contrôlées, la micropropagation in vitro d'explants apicaux et basaux donne de hauts rendements. Pour la culture, une attention particulière doit être apportée aux températures hivernales minimales. Description des fruits et caractérisation biochimique. Le fruit comestible est globulaire, avec un diamètre atteignant 1,5 cm. La pulpe est colloïdale, sa couleur va du rougeoyant au rouge bleuâtre. La caractérisation chimique a principalement porté sur la composition en bétalaines, dont les composés prédominants sont la bétanine et les bétaxanthines. La teneur en bétalaines serait de 2,3 mg ·100 g -1 de pulpe. Le colorant semble être plus stable que celui des betteraves rouges. Consommation humaine et importance commerciale. Pendant la saison de production (juin à septembre), les fruits sont trouvés sur tous les marchés de leur lieu de production. Ils sont mangés frais ou transformés. La commercialisation du fruit est limitée principalement aux zones de production rurales dans certains états du Mexique. Conclusions. Notre synthèse a établi que les informations publiées sur Myrtillocactus étaient rares et incomplètes. La plante est sous utilisée, en dépit de ses propriétés alimentaires et de son potentiel commercial. Comme les espèces de Myrtillocactus s'adaptent facilement dans des conditions de grande sécheresse, elles mériteraient de faire l'objet de beaucoup plus de recherche (Résumé d'auteur

    Experience deploying an analysis facility for the Rubin Observatory’s Legacy Survey of Space and Time (LSST) data

    Get PDF
    The Vera C. Rubin Observatory is preparing for the execution of the most ambitious astronomical survey ever attempted, the Legacy Survey of Space and Time (LSST). Currently in its final phase of construction in the Andes mountains in Chile and due to start operations in 2025 for 10 years, its 8.4-meter telescope will nightly scan the southern sky and collect images of the entire visible sky every 4 nights using a 3.2 Gigapixel camera, the largest imaging device ever built for astronomy. Automated detection and classification of celestial objects will be performed by sophisticated algorithms on high-resolution images to progressively produce an astronomical catalog eventually composed of 20 billion galaxies and 17 billion stars and their associated physical properties. In this paper, we briefly present the infrastructure deployed at the French Rubin data facility (operated by IN2P3 computing center, CC-IN2P3) to deploy the Rubin Science Platform, a set of web-based services to provide effective and convenient access to LSST data for scientific analysis. We describe the main services of the platform, the components that provide those services and our deployment model. We also present the Kubernetes-based infrastructure we are experimenting with for hosting the LSST astronomical catalog, a petabyte-scale relational database developed for the specific needs of the project
    corecore